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1. Purpose  
1.1. This appendix sets out the methodology used for our modelling and presents the 

entire set of results from this modelling. 

1.2. We use empirical modelling analysis to inform: 

(a) Whether different risk management alternatives can be considered as 
substitutes, assuming they are priced competitively 

(b) What risk management options are best used as part of a portfolio 

(c) What impact various scenarios have on the options/portfolios available for risk 
management: 

(i) With more intermittent generation in the market 

(ii) Higher spot price volatility 

(iii) Higher spot prices at super-peak times 

(d) What impact estimated risk premia have on the relative attractiveness of the 
different risk management options/portfolios 

1.3. We start our modelling with risk-neutral and perfectly competitive prices, assuming 
unlimited availability of each contract type. This is in keeping with a SSNIP test 
approach, which uses the competitive price rather than the prevailing price as the 
starting point and considers the impact of price increases. 

1.4. We do not use historical contract prices in our modelling because we have 
constructed market states where the expected return of each contract is different to 
what was observed in any particular year. Additionally, using just one year of data 
to determine if a contract's expected return is positive or negative would not give an 
accurate picture. 

1.5. We also add a premium to contract prices starting from the ‘Seasonal risk premium’ 
scenario, based on historical ASX data. This helps us understand how these 
premiums affect the performance of each portfolio.  

2. Methodology 
2.1. Retailers balance their objectives of maximising their expected profit and minimising 

the risk of large losses. One extreme is for the retailer to only be concerned with 
their expected profit and (based on the prices of risk management tools) they may 
remain completely unhedged. The other extreme would be for the retailer to only be 
concerned with their worst-case profit, likely offloading all their risk by entering a 
FPVV contract or charging their customers based on wholesale prices. However, 
this would likely lead to the lowest expected profit as the risk premium of offloading 
all risk would be very high.  

2.2. To assess both objectives, we model their profit under different possible outcomes 
in the market – we call these “market states”. That is, our modelling attempts to 
replicate the risk management decision faced at any point in time by a non-
integrated retailer, with uncertainty about what will happen to spot prices and its 
customer load. Over the modelled market states, we can compare the different risk 
management options and portfolios to see which ones result in the best risk 
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reduction, and the type of market states each option or portfolio improves. We also 
compare strategies to see which ones perform better in extreme market stress 
situations.1  

2.3. With many different market states modelled and with each risk management 
strategy impacting each one of them uniquely, we need to pick a risk measure 
which transforms the profits and losses across all the market states to a single 
number. The purpose of the risk measure is to allow us to directly compare different 
risk management strategies’ effectiveness at reducing the downside risk. Potential 
risk measures include: The ‘Expectation’ risk measure (a risk neutral risk measure), 
the ‘Worst Case’ risk measure (the market state with the lowest profit or largest 
loss), the ‘Good Deal’ risk measure2, Value at Risk3 (VaR) risk measure, and the 
Conditional Value at Risk4 (CVaR) risk measure. 

2.4. We illustrate both VaR and CVaR in Figure 1. Assuming a risk level of 20%, VaR20% 
represents the smallest value where there is a 20% chance of profit being below 
this value. CVaR20% is the expected profit when only looking at the outcomes with a 
profit lower than VaR20%. 

2.5. VaR has traditionally been used more often in risk management regulation.5 
However, it has the undesirable property (especially in the context of comparing 
and optimising portfolios) of not following the principle of sub-additivity. This means 
that a diversified portfolio could end up with a higher VaR than the individual assets 
that make it up. 

2.6. CVaR is a valuable alternative to VaR. It gives us a lower bound to VaR and follows 
the principal of sub-additivity, making it more reliable as a risk measure when 
comparing and optimising portfolios. Rockafellar et al (2000)6 introduce a formula 
that allows us to apply CVaR in mathematical models.   

 

 
1  Based on Stress tests | Electricity Authority (ea.govt.nz). Our capacity stress test uses the 16 highest 

demand trading periods and sets their price to $10,000/MWh (our model is a little more conservative as 
we don’t model it as occurring in a single day). Our energy shortage stress test adds $300/MWh to all 
energy prices in a quarter (which is the difference between the test case and base case in Table 1).  

2  Druenne, Eric, Andreas Ehrenmann, Gauthier de Maere d'Aertrycke, and Yves Smeers. "Good-deal 
investment valuation in stochastic generation capacity expansion problems." In 2011 44th Hawaii 
International Conference on System Sciences, pp. 1-9. IEEE, 2011. 

3  Duffie, Darrell, and Jun Pan. "An overview of value at risk." Journal of derivatives 4, no. 3 (1997): 7-49. 
4  Artzner, Philippe, Freddy Delbaen, Jean‐Marc Eber, and David Heath. "Coherent measures of 

risk." Mathematical finance 9, no. 3 (1999): 203-228. 
5  Hull, John. Risk management and financial institutions,+ Web Site. Vol. 733. John Wiley & Sons, 2012. 
6  Rockafellar, R. Tyrrell, and Stanislav Uryasev. "Optimization of conditional value-at-risk." Journal of 

risk 2 (2000): 21-42. 

https://www.ea.govt.nz/industry/wholesale/spot-market/stress-tests/
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Figure 1: Illustration of Value at Risk (VaR) and Conditional Value at Risk (CVaR) 

 
2.7. For most of our modelling we use a 50% weight on the expected profit, and a 50% 

weight on the CVaR (at a 20% risk level) risk measure which we call E-CVaR. 

Scenarios 
2.8. We run our modelling under seven different scenarios. Our baseline scenario is 

designed to inform our substitutability analysis. From this baseline scenario we then 
add different assumptions about pricing of the risk management options or 
expectations of market states, which allows us to isolate the impact of each 
assumption. 

2.9. The baseline scenario assumes a simple volume matching strategy for each contract. 
We also price each risk management option risk-neutrally. That is, the mean payoff 
over all the market states for each risk management option is zero. No risk premia 
are added to any risk management price. While this does not replicate a real-world 
scenario, it allows us to: 

(a) Avoid falsely ruling in or out a substitute due to our construction of competitive 
risk management prices. This may be important since the calculation of our 
risk premia in our competitive risk management prices are based on historical 
data. 

(b) Avoid falsely ruling in or out a substitute due to non-competitive current risk 
management prices.    

2.10. Our second scenario, still assuming contracts are priced risk-neutrally, is designed to 
allow for a portfolio approach to risk management. It selects the volume of each risk 
management option which maximises the risk adjusted profit. It allows us to see the 
relative risk reduction of different portfolios and compares this to the risk reduction of 
each risk management option in the baseline scenario.    

2.11. Using the portfolio optimisation approach, our third scenario adds risk premia to 
historical spot prices to construct contract prices.  

2.12. Our fourth scenario changes our risk measure to the worst-case risk measure, 
allowing us to see whether our conclusions about each portfolio remain consistent 
with a much more conservative risk measure. 
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2.13. Using the E-CVaR risk measure with the added risk premia, the remaining three 
scenarios are designed to look at the impact of different assumptions about the future 
— more intermittent generation in the market, more volatile spot prices, and higher 
prices at super-peak times. 

Table 1: Modelling scenarios 

Scenario Assumptions What the 
modelling will 
show us 

 Product prices Spot prices Risk 
management 
volume 
purchasing 
strategy 

 

 

Baseline Contract prices are 
priced risk neutrally 
(so the mean payoff of 
all contracts is zero). 
No risk premia added. 

Battery costs 
assumed to be offset 
by reserve market in 
expectation.  

The cost of Demand 
Response is assumed 
to exactly cover the 
expected savings from 
the lower wholesale 
costs. 

Revenue calculated to 
have zero mean profit 
across the market 
states 

Equal weight 
given to 40 
market states. 

Demand 
varies both 
overall and for 
peak demand. 

There are 
market states 
where both the 
average spot 
price and spot 
price volatility 
are changed, 
as well as 
states which 
volatility is 
targeted to the 
morning and 
evening peaks 

Contract volumes 
equal to demand 
in the default 
market state 

 

Used for our 
substitutability 
analysis. Shows 
the effectiveness 
of each hedging 
strategy (where 
contract volume 
matched to 
expected demand)  

Maximising 
risk adjusted 
profit 

^ ^ Contract volumes 
= the volume 
which maximises 
the sum of the E-
CVaR of their 
profit. We 
calculate the E-
CVaR of each 
island, each 
quarter, and for 
business days and 
non-business 
days. 

Shows the 
additional benefit 
of optimising the 
contract volume 
over a simple 
volume matching 
strategy 

(allows for more 
portfolio approach) 
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Competitive 
risk 
management 
prices 

Contract prices based 
on our estimates of 
“reasonable” contract 
prices – starting with 
our estimated risk-
neutral prices and 
adding seasonal 
premia 

^ ^ What impact does 
this have on the 
relative 
attractiveness of 
the different risk 
management 
options? 

Worst-case 
risk 
measure 

^ ^ Contract volumes 
= the volume 
which maximises 
the sum of the 
Worst-case profit. 
We calculate the 
Worst-case profit 
of each island, 
each quarter, and 
for business days 
and non-business 
days. 

Are our results still 
consistent when 
we use a more 
conservative risk 
measure. 

More 
intermittent 
generation 

^ Assume more 
solar and wind 
in the market, 
making spot 
prices lower 
when solar 
and wind 
generation is 
high. 

Contract volumes 
= the volume 
which maximises 
the sum of the E-
CVaR of their 
profit. We 
calculate the E-
CVaR of each 
island, each 
quarter, and for 
business days and 
non-business 
days. 

 

What impact a 
future market state 
may have on risk 
management 
practices 

Higher 
volatility 

^ Make spot 
prices in all 
market states 
more volatile. 

^ What impact 
higher spot price 
volatility may have 
on risk 
management 
options 

Higher 
prices at 
super-peak 
times 

^ Make prices 
during super-
peak periods 
in all market 
states higher. 

^ Does this increase 
the attractiveness 
of shaped 
contracts? 
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Assumptions 

Load profile 

2.14. For the load profile of our hypothetical non-integrated retailer, we sum the load 
profiles of Electric Kiwi, Todd Energy, Pulse Energy, and Flick Electric in 2023. 
Figure 2 shows that the load profile changes significantly throughout the year, and 
by island. We also see that business days tend to have a much larger and earlier 
morning peak and slightly higher evening peak compared to non-business days. 

Figure 2: Load profile of non-integrated retailer's over 2023. North Island load 
accumulated at Ōtāhuhu, South Island load accumulated at Benmore. 

 

Market states 

2.15. There are 40 market states, created by varying the spot price and/or the non-
integrated retailers’ demand. These 40 market states are constructed as the 
combination of: 

(a) Eight different spot price market states: 

(i) Default: Uses 2023 wholesale prices (CPI adjusted to 1 January 2024) 

(ii) Low Price - Low Volatility: Multiply all prices by 0.5 

(iii) Low Price - High Volatility: Multiply all prices by 1.5 and subtract $155/MWh 
(setting a floor price of $0/MWh) 

(iv) High Price - Low Volatility: Multiply all prices by 0.5 and add $124/MWh 

(v) High Price - High Volatility: Multiply all prices by 1.5 

(vi) High Morning Peak Price: Multiply all morning peak prices (7am-10am) by 3 

(vii) High Evening Peak Price: Multiply all evening peak prices (5pm-8pm) by 3 

(viii) High Morning and Evening Peak Price: Multiple both morning peak and 
evening peak prices by 2 

(b) Five different demand market states: 

(i) Default: Uses 2023 reconciled offtake of the modelled hypothetical non-
integrated retailer 



Appendix B: Modelling methodology and results  9 

(ii) Overall Demand Higher 5% - Peak Higher 2%: Increase demand at every 
point of connection by 5%, then increase demand during the morning and 
evening peak periods by a further 2% 

(iii) Overall Demand Higher 5% - Peak Lower 2%: Increase demand at every 
point of connection by 5%, then decrease demand during the morning and 
evening peak periods by 2% 

(iv) Overall Demand Lower 5% - Peak Higher 2%: Decrease demand at every 
point of connection by 5%, then increase demand during the morning and 
evening peak periods by 2% 

(v) Overall Demand Lower 5% - Peak Lower 2%: Decrease demand at every 
point of connection by 5%, then decrease demand during the morning and 
evening peak periods by a further 2%  

Which risk management options and portfolios we look at 

2.16. We compare many different risk management options, each with individual 
characteristics. Table 2 summarises each contract in terms of: 

(a) The contract length (i.e. whether each contract is only for a single quarter or 
for the entire year). 

(b) The time the contract covers. For example, the modelled OTC morning peak 
contract covers 7am to 10am. 

(c) Whether there is a separate product for business days and non-business 
days. 

(d) Additional information about the model, how the contract works, or some 
caveats about the contract. 

Table 2: Summary of each type of risk management option modelled. 

Risk management 
option 

Contract 
Length 

Time 
Covered 

Separate 
Business Day 
and Non-
Business Day 
Volumes 

Description / Caveats 

ASX baseload 
hedges 

Quarterly All trading 
Periods 

Yes Existing ASX baseload contracts 
do not have a separate product 
for Business Days and Non-
Business Days. 

ASX peak hedges Quarterly 7am to 
10pm 

Yes Existing ASX peak contracts do 
not cover Non-Business Days. 

OTC Morning 
Peak  

Quarterly 7am to 
10am 

Yes Morning peak contracts cover a 
range of different times. 
However, we tend to see that 
many of them would at least 
cover 7am to 9am. We extended 
this to match length of the 
evening peak contract. 
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OTC Evening 
Peak 

Quarterly 5pm to 8pm Yes Evening peak contracts cover a 
range of different times. 
However, we tend to see that 
many would at least cover 5pm 
to 8pm. 

OTC C300 Quarterly All trading 
Periods 

Yes Caps prices to $300/MWh. Each 
MWh purchased is distributed 
evenly throughout the contract 
duration. For each trading 
period, return per MWh is the 
maximum of $0/MWh and the 
spot price minus $300/MWh. 

Battery Annual All trading 
Periods 

No Assumed knowledge of 1 hour 
ahead PRSS prices to create a 
bid and offer strategy that is 
realised in the real time market. 
Earnings in the reserve market 
are assumed to be the same 
across all market states. 

Flattened Demand 
Profile (Demand 
Response) 

Annual All trading 
Periods 

No Modelled by completely 
flattening their daily load profile. 
The retail price is re-calculated 
as the new LWAP. 

Solar PPA Annual All trading 
Periods 

No Generation profile is based on 
Kaitaia Solar Farm in 2024. 

Wind PPA Annual All trading 
Periods 

No Generation profile is based on 
Tararua Wind Farm in 2023. 

Geothermal PPA Annual All trading 
Periods 

No Generation profile is based on 
Ngā Awa Pūrua Power Station 
in 2023. 

 

2.17. For a battery to be profitable in the wholesale market in the short run, it requires 
there to be sufficient volatility in wholesale prices so that it can cover the cost of 
degradation due to cycling the battery. Thus, the specific parameters of the battery 
impact its effectiveness as a risk management tool. The assumed parameters for 
the battery in our model are: 

(a) Roundtrip efficiency = 0.8 MWh/MWh 

(b) Battery cost = $1,000,000/MW 

(c) Ratio of storage capacity = 2 MWh/MW = 2 Hours 

(d) Self-discharge rate = 2% per month 

(e) Number of cycles = 8000 

2.18. The additional degradation of using a battery is assumed to cost = (1 / Ratio of 
storage capacity) * (1 / Number of cycles) * Battery Cost = $62.50/MWh of 
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discharge (ignoring any degradation that occurs due self-discharging). This 
additional degradation cost needs to be covered on top of the efficiency losses for it 
to be profitable to use a battery in the wholesale market. Our model assumes that 
the battery is risk neutrally priced, assuming earnings on the reserve market don’t 
change across scenarios and are sufficient to recover the capital costs so that the 
profit of using the battery as a risk management vehicle is 0 in expectation. 

2.19. In an attempt to model a good but not perfect use of the battery, the process of 
simulating the battery first assumes we have perfect knowledge of the 1 hour ahead 
PRSS (Price-Responsive Schedule Short) prices at the Ōtāhuhu and Benmore 
nodes (assumed to be the possible locations of the battery). We then solve an 
optimisation model which runs the battery optimally using these PRSS prices. We 
then use the results of the optimisation model to create input offers and bids in the 
real time market which we simulate to calculate the profitability of the battery in 
each scenario. 

2.20. We attempt to cover a range of risk management portfolios in both our Baseline 
scenario and the following scenarios which use portfolio optimisation. The portfolios 
considered are summarised in Table 3 and whether they apply to the Baseline 
scenario (or the scenarios with portfolio optimisation). Some portfolios can't be 
included in the baseline scenario because there are several risk management 
options for all trading periods. As a result, it's not clear how to choose the volume 
for each option. 

Table 3: Combination of contracts considered in each modelled portfolio. 

Portfolio Name Risk management options included Baseline Scenario 

Unhedged None Yes 

Battery Battery  Yes 

C300 OTC C300 Yes 

Demand Response Flattened Demand Profile Yes 

Baseload ASX baseload hedge Yes 

Peak ASX peak hedge Yes 

Super-Peak OTC Morning Peak, OTC Evening Peak Yes 

Baseload & Peak ASX baseload hedge, ASX peak hedge Yes 

Baseload & Super-Peak ASX baseload hedge, OTC Morning Peak, 
OTC Evening Peak 

Yes 

Baseload, Peak, & 
Super-Peak 

ASX baseload hedge, ASX peak hedge, 
OTC Morning Peak, OTC Evening Peak 

Yes 

Baseload, Peak, Super-
Peak, Battery, & C300 

ASX baseload hedge, ASX peak hedge, 
OTC Morning Peak, OTC Evening Peak, 
Battery, OTC C300 

No 
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Baseload, Wind, & Solar ASX baseload hedge, Wind PPA, Solar 
PPA 

No 

Baseload & Battery ASX baseload hedge & Battery No 

Baseload & C300 ASX baseload hedge & OTC C300 No 

Demand Response & 
Baseload 

Flattened Demand Profile, ASX baseload 
hedge 

Yes 

Solar Solar PPA Yes 

Wind Wind PPA Yes 

Geothermal Geothermal PPA Yes 

 

Prices of risk management options  

2.21. We calculate a risk neutral price for each quarter and day type for all contracts so 
that we can directly compare things like the PPA and batteries, which are annual 
contracts that do not depend directly on quarter and day type, to the ASX and OTC 
contracts.  

2.22. The volume of the PPA and batteries purchased are assumed to have a fixed 
relationship across quarters and day types based on the number of trading periods. 

2.23. The process of getting the risk neutral prices for baseload, peak and super-peak 
contracts at each location (Ōtāhuhu and Benmore) is: 

(a) Find which trading dates are relevant based on: 

(i) The quarter (January to March, April to June, July to September, or 
October to December) 

(ii) The day type (Business Day or Non-Business Day) 

(b) Within these trading dates, find which trading periods are relevant for the 
contract, for example: 

(i) Peak = 7am to 10pm. 

(ii) Morning peak = 7am to 10am. 

(iii) Evening peak = 5pm to 8pm. 

(iv) Baseload = all trading periods. 

(c) Calculate the return of the contract (assuming the hypothetical retailer buys 
1MWh spread evenly across the contract duration) in each trading period for 
the contract.  

(i) The volume of the contract in that trading period = 1 / number of hours. 

(ii) The return from the contract is equal to the volume in that trading period 
multiplied by the spot price.  

(d) Sum up the return in each trading period to get total quarterly returns. 

(e) Repeat (c) and (d) for each different market state. 
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(f) Calculate the mean total return across all the different market states (i.e. the 
expected revenue from the contract). 

(g) This mean total return for 1MWh is the risk neutral price of the contract.  

2.24. The process for getting the risk neutral price for the C300 contract at each location 
(Ōtāhuhu and Benmore) is: 

(a) Find which trading dates are relevant based on: 

(i) The quarter (January to March, April to June, July to September, or 
October to December) 

(ii) The day type (Business Day or Non-Business Day) 

(b) As we assume that it is a Baseload contract, within these trading dates, all 
trading periods are relevant for the contract. 

(c) Calculate the return of the contract (assuming the hypothetical retailer buys 
1MWh spread evenly across the contract duration) in each trading period for 
the contract.  

(i) The volume of the contract in that trading period = 1 / number of hours. 

(d) The return from the contract is equal to the volume in that trading period 
multiplied by max (spot price – 300, 0).  

(e) Sum up the return in each trading period to get total quarterly returns. 

(f) Repeat (c) and (d) for each market state. 

(g) Calculate the mean total return across all the different market states (i.e. the 
expected revenue from the contract). 

(h) This mean total return for 1MWh is the risk neutral price of the contract.  

2.25. We are modelling each PPAs ability to reduce risk nationally. With most new wind, 
solar, and geothermal investments being in the North Island, we model PPAs as 
being in Ōtāhuhu. The process for getting the risk neutral price for each PPA is: 

(a) Query the generation of the unit used to model the PPA (mentioned in Table 
2) over the entire year. 

(b) Find which trading dates are relevant based on: 

(i) The quarter (January to March, April to June, July to September, or 
October to December). 

(ii) The day type (Business Day or Non-Business Day). 

(c) Scale the output of the generator by dividing the output in each trading period 
by the total energy output over that quarter and day type. 

(d) Calculate the revenue of the scaled generator by multiplying the scaled output 
by the wholesale price. 

(e) Sum the revenue earned by the generator over all the relevant trading periods 
to get the quarterly returns. 

(f) Repeat (d) and (e) for each market state. 

(g) Calculate the mean total return across all the different market states (i.e. the 
expected revenue from the contract). 
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(h) This mean total return for 1MWh is the risk neutral price of the contract. 

2.26. The process for getting the risk neutral price for the battery is similar to the PPA, 
except the revenue is based on our simulated operation of the battery, and the 
battery in our model can be located at both Ōtāhuhu and Benmore. 

2.27. By setting the contract price (i.e. the cost of the contract) equal to the expected 
revenue of the contract, the expected profit from buying the contract is zero.  

2.28. Table 4 summarises how we calculate prices of each option in each scenario. 

2.29. Appendix A discusses in more detail how the risk premia are calculated. 

Table 4: Pricing the risk management options in each scenario 

Risk 
management 
option 

Scenario 

 Base-
line 

Portfolio 
optim-
isation 

Seasonal 
risk 
premium 

Worst 
case risk 
measure 

More 
intermittent 
generation 

Higher 
volatility 

Higher 
prices at 
super-
peaks 

ASX hedges Risk neutrally Risk neutrally plus quarterly premium 

Battery Risk neutrally 

C300 Risk neutrally 

Demand 
response 

Risk neutrally 

OTC hedges Risk neutrally Risk neutrally plus quarterly premium 

Solar PPA Risk neutrally 

Wind PPA Risk neutrally 

Geothermal 
PPA 

Risk neutrally 

 

Volume of risk management options purchased 

2.30. In the baseline scenario the process of getting the volumes of each contract at each 
location is as follows: 

(a) Battery: The size of the battery purchased (in MW) on each island is the 
average demand over the entire year in the default demand market state. 

(b) C300: The amount of the C300 purchased is the total MWh of demand in that 
quarter, island, and day type in the default demand market state. 

(c) Demand Response: There is no contract purchased, the daily load profile is 
just assumed to be flat. 
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(d) Baseload: The amount of the Baseload ASX contract purchased is the total 
MWh of demand in that island, quarter, and day type in the default demand 
market state. 

(e) Peak: The amount of Peak ASX contract purchased is the total MWh of 
demand from 7am to 10pm in that island, quarter, and day type in the default 
demand market state. 

(f) Super-Peak:  

(i) The amount of OTC Morning Peak contract purchased is the total MWh 
of demand from 7am to 10am. In that island, quarter, and day type in 
the default demand market state. 

(ii) The amount of OTC Evening Peak contract purchased is the total MWh 
of demand from 5pm to 8pm. In that island, quarter, and day type in the 
default demand market state. 

(g) Baseload & Peak: When buying baseload and peak contracts together, the 
volume of the peak contract purchased is calculated as an extra volume on 
top of the baseload volume. The baseload volume purchased is set to the 
amount needed to cover the retailers load overnight (i.e., the average demand 
between the hours of 10pm and 7am). The peak volume is therefore the extra 
demand on top of this baseload demand during the peak hours (7am to 
10pm). Thus, the baseload and peak volumes are calculated as:  

(i) ASX Baseload Volume = mean�Demand10pm−7am� ⋅ HoursAll 

(ii) ASX Peak Volume = �mean�Demand7am−10pm� − mean�Demand10pm−7am� � ⋅
Hours7am−10pm 

(h) Baseload & Super-Peak: Similarly, when buying baseload and super-peak 
contracts together, the volume of the super-peak volume is calculated as an 
extra volume on top of the baseload volume. The baseload, morning peak, 
and evening peak volumes are calculated as: 

(i) ASX Baseload Volume = mean�Demand10am−5pm,8pm−7am� ⋅ HoursAll 

(ii) OTC Morning Peak Volume = �mean(Demand7am−10am)−

mean�Demand10pm−7am�� ⋅ Hours7am−10am 

(iii) OTC Evening Peak Volume = �mean�Demand5pm−8pm� −

mean�Demand10pm−7am�� ⋅ Hours5pm−8pm  

(i) Baseload, Peak, & Super-Peak: Again, when buying baseload, peak, and 
super-peak contracts together, the volume of the super peak volume is 
calculated as an extra volume on top of the baseload and peak volume. The 
baseload, peak, morning peak, and evening peak volumes are calculated as: 

(i) ASX Baseload Volume = mean�Demand10pm−7am� ⋅ HoursAll  

(ii) ASX Peak Volume = �mean�Demand10am−5pm,8pm−10pm� −
mean�Demand10pm−7am� � ⋅ Hours7am−10pm  
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(iii) OTC Morning Peak Volume = �mean(Demand7am−10am)−

mean�Demand10am−5pm,8pm−10pm�� ⋅ Hours7am−10am 

(iv) OTC Evening Peak Volume = �mean�Demand5pm−8pm� −

mean�Demand10am−5pm,8pm−10pm�� ⋅ Hours5pm−8pm  

(j) Demand Response & Baseload: The daily load profile is assumed to be flat, 
and the volume of the baseload contract purchased is the total MWh of 
demand in that island, quarter, and day type. 

(k) Solar: The total MWh of Solar PPA purchased over the entire year is equal to 
the total MWh of demand.  

(l) Wind: The total MWh of Wind PPA purchased over the entire year is equal to 
the total MWh of demand. 

(m) Geothermal: The total MWh of Geothermal PPA purchased over the entire 
year is equal to the total MWh of demand. 

2.31. All the subsequent scenarios are based on the results of a portfolio optimisation 
model that minimises the sum of the E-CVaR across the islands, quarters and day 
types. 

3. Results 

Baseline scenario 
3.1. A contract position that closely matches the load profile is expected to improve risk- 

adjusted welfare under risk-neutral pricing. 

3.2. Figure 3 shows that the Baseload contract over-hedges the non-integrated retailer 
overnight and under-hedges during morning and evening peak times. 

3.3. In Figure 4, adding the ASX peak contract (plus one for non-business days) helps 
the non-integrated retailer better match the load profile, reducing overnight over-
hedging. 

3.4. Figure 5 shows that including OTC morning and evening peak contracts further 
improves the portfolio’s ability to match the load profile, especially during peak 
times. 

3.5. In contrast, Figure 6 shows that the Solar PPA is much worse at matching the load 
profile than the Baseload contract due to its generation volatility and poor alignment 
with the load profile. 
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Figure 3: Volume matching method: Baseload - Contract position and load profile in 
each island, quarter, and day type. 

 

Figure 4: Volume matching method: Baseload and Peak - Contract position and load 
profile in each island, quarter, and day type. 

 
 

Figure 5: Volume matching method: Baseload, Peak, and Super-Peak - Contract 
position and load profile in each island, quarter, and day type. 
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Figure 6: Volume matching method: Solar PPA - Mean contract position (alongside 
10th and 90th percentiles) in each island, quarter, and day type. 

 
 

3.6. Figure 7 compares the E-CVaR of Profit given each portfolio. Throughout our 
modelling, this value is always negative because we assume both retail and 
contract prices are set risk-neutrally, meaning they will not make a profit on 
average. Additionally, since we model the non-integrated retailer as risk-averse, 
they put additional weight on market states with high losses. In theory, this could 
change in the scenarios with a negative premium on some contracts, but that does 
not occur in our analysis. 

3.7. A flat daily load profile with a Baseload contract is basically tied with the ‘Baseload 
& Super-Peak’ portfolio in terms of offering the greatest risk reduction. This is 
followed closely by the 'Baseload, Peak, & Super-Peak' and ‘Baseload & Peak’ 
portfolios. PPAs generally perform worse at reducing risk, with the Geothermal PPA 
being the best performer. On their own, purchasing demand response, the C300 
contract and the battery each increased risk relative to being unhedged. 

 

Figure 7: Volume matching method: Sum of E-CVaR in each island, quarter, and day 
type given each portfolio. 
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3.8. Figure 8 and Figure 9, show the profits for each portfolio across different market 
states in the North Island during business days for the July to September quarter.  

3.9. When the non-integrated retailer is unhedged, there is a significant disparity 
between market states. In some states, large profits are made due to low spot 
prices, while in others, substantial losses occur. Although the Battery and C300 
contracts provide some improvements to the high super-peak market states, they 
worsen the ‘High Price and Low Volatility’ and ‘High Price and High Volatility’ 
market states, ultimately increasing overall risk. 

3.10. Flattening the load profile improves outcomes in the high super-peak price market 
states by reducing consumption during those periods. However, this approach 
offers little improvement in market states where prices are consistently high 
because it also reduces retail revenue. As a result, it is worse than staying 
unhedged. However, when the load profile flattening is combined with the Baseload 
contract, it significantly reduces losses across all high-price market states (Figure 
9). 

3.11. The Baseload contract alone is effective at improving outcomes in high-price market 
states with both low and high volatility, as these market states experience price 
increases throughout the day. However, compared to more shaped contracts, the 
Baseload contract is less effective in reducing losses in the high super-peak price 
market states. 

3.12. PPAs, while less effective overall, do improve outcomes in high-price market states. 
However, they struggle in high super-peak price states, with the Solar PPA 
performing particularly poorly during the high evening peak price market states. 

3.13. The 'Baseload & Super-Peak' and 'Baseload, Peak, & Super-Peak' portfolios 
experience their largest losses in the low price and low demand market states. In 
these states, the ‘Baseload, & Super-Peak’ portfolio has smaller losses, suggesting 
better performance in this quarter, during business days, and in the North Island. 
This outcome is unexpected, as all the contracts in the ‘Baseload & Super-Peak’ 
portfolio are also available in the ‘Baseload, Peak, & Super-Peak’ portfolio, so 
optimal volume selection should result in the Baseload, Peak, & Super-Peak’ 
portfolio performing no worse than the ‘Baseload & Super-Peak’ portfolio. This 
implies that the volume matching method can create solutions that are far from 
optimal, leading to these surprising results. 
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Figure 8: Volume matching method: Profit in each market state in the North Island, in 
the July to September quarter, and during business days. Less effective portfolios. 
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Figure 9: Volume matching method: Profit in each market state in the North Island, in 
the July to September quarter, and during business days. More effective portfolios. 

 
 

3.14. Figure 10 shows how each portfolio performs during the capacity shortage stress 
test. The 'Demand Response & Baseload' portfolio performs the best, followed by 
the portfolios which include the super-peak contract.  

3.15. In this quarter, demand is much higher compared to the rest of the year. So, the 
PPA portfolios will tend to be under-hedged as we are locked into a volume for the 
entire year. The Solar PPA performs worse than remaining unhedged because 
there is very little solar generation during the 16 highest demand trading periods, 
which all occur in the evening near sunset. 

3.16. Figure 11 shows the effectiveness of each portfolio during the energy shortage 
stress test. Portfolios that include the 'ASX Baseload' contract perform very well in 
this test. 

Figure 10: Volume matching method: Profit given the capacity shortage stress test in 
the July to September quarter. All spot prices are set to $10,000/MWh in the 16 
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highest demand trading periods. All other prices are from the default price market 
state. 

 
 

Figure 11: Volume matching method: Profit given the energy shortage stress test in 
the July to September quarter. Compared to the default price market state, the price in 
every trading period is increased by $300/MWh. 

 
 

Maximising risk adjusted profit 
3.17. Comparing Figure 12 to Figure 3, we see that for the given market states, it’s best 

to buy more than the ‘Default’ demand market state volume. Figure 13 and Figure 
14 show that the optimal contract volume can differ significantly from those in the 
volume-matching method. 

3.18. Another advantage of choosing contract volumes through a portfolio optimisation is 
the ability to buy a mix of contract types as shown in Figure 15. 

3.19. The optimal C300 volume is significantly lower compared to the previous section, 
and the optimal battery capacity (when not combined with another contract) is zero. 
However, when combined with a baseload contract, both a battery and C300 
contract helps to reduce risk. 
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3.20. Comparing Figure 17 to Figure 7, all portfolios have improved when compared to 
equivalent portfolios in the volume-matching method. 

Figure 12: Portfolio optimisation: Baseload - Contract position and load profile in 
each island, quarter, and day type. 

 
 

Figure 13: Portfolio optimisation: Baseload & Peak - Contract position and load profile 
in each island, quarter, and day type. 
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Figure 14: Portfolio optimisation: Baseload, Peak, and Super-Peak Contract position 
and load profile in each island, quarter, and day type. 

 
 

Figure 15: Portfolio optimisation: Baseload, Peak, Super-Peak, Battery, and C300 - 
Contract position and load profile in each island, quarter, and day type. 
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Figure 16: Portfolio optimisation: Baseload and C300 - Contract position and load 
profile in each island, quarter, and day type. 

 
 

Figure 17: Portfolio optimisation: Sum of E-CVaR in each island, quarter, and day type 
given each portfolio. 

 
 

3.21. Comparing Figure 18 and Figure 19 to Figure 8 and Figure 9, we see that across all 
the Non-PPA portfolios, the portfolio optimisation method reduces large losses 
better than the volume-matching method. 

3.22. PPA volumes are chosen to minimise risk for the whole year, instead of focusing on 
any quarter. So, in this specific quarter (July to September), the volume-matching 
method works better in high-loss market states, even though portfolio optimisation 
reduces risk more effectively over the entire year. 
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Figure 18: Portfolio optimisation: Profit in each market state in the North Island, in the 
July to September quarter, and during business days. Less effective portfolios.
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Figure 19: Portfolio optimisation: Profit in each market state in the North Island, in the 
July to September quarter, and during business days. More effective portfolios.

 
3.23. Since contract volumes are chosen to minimise risk over the 40 market states, there 

are mixed results when comparing their effectiveness to the volume-matching 
method during the stress tests. 

3.24. Because the optimal solution avoids buying a battery or the C300 contracts for July 
to September, the non-integrated retailer remains unhedged with these portfolio 
choices. 

3.25. We see that PPAs continue to perform worse than portfolios with ASX and OTC 
contracts during these stress tests. 

3.26. We also see that adding more instruments tends to improve the non-integrated 
retailer’s profit during these stress test scenarios. The notable exception is that the 
‘Baseload & C300’ portfolio performs the best across both stress tests. Figure 16 
shows that the best strategy for this portfolio is to buy more baseload than their 
expected demand, which helps in the energy stress test. The optimal solution is to 
also buy a combined baseload and C300 volume that nearly as high as their peak 
consumption, which helps in the capacity stress test. 
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Figure 20: Portfolio optimisation: Profit given the capacity shortage stress test in the 
July to September quarter. All spot prices are set to $10,000/MWh in the 16 highest 
demand trading periods. All other prices are from the default price market state. 

 
 

Figure 21: Portfolio optimisation: Profit given the energy shortage stress test in the 
July to September quarter. Compared to the default price market state, the price in 
every trading period is increased by $300/MWh. 

 
 

Adding premiums to risk management prices 
3.27. From 2011 to the end of 2023, we have observed that contracts on the ASX (for 

those traded more than a year ahead) tend to be priced above their final reference 
price during winter quarters and tend to be priced below their final reference price in 
summer quarters. 

3.28. Adding this seasonal premium to all quarterly contracts could affect how much of 
each contract it is optimal to buy. It may also make some of the other contracts 
worth including in the portfolio. 
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3.29. Table 5 shows the premiums we add to the risk-neutral price of each ASX and OTC 
contract (excluding the C300 as only a small proportion of this premium would 
apply). 

3.30. There may also be additional premiums for peak and super-peak contracts due to 
scarcity and higher volatility (in addition to the scarcity and volatility premia present 
in the ASX premium). However, due to the complexity in calculating these premia, 
we have not attempted to add them here. This is discussed further in Appendix A. 

3.31. Our risk-neutral prices already include a shape premium for the peak and super-
peak hedges. 

Table 5: ASX Premium ($/MWh) by Quarter and Location 

 Ōtāhuhu Benmore 

January – March -21.0 -20.0 

April – June 17.0 9.0 

July – September 25.0 16.0 

October – December -9.0 -15.0 

 

3.32. Comparing Figure 22 to Figure 17, we see that adding these premia generally 
increase the overall risk for portfolios using ASX or OTC contracts.  

3.33. The exception is for the ‘Super-Peak’ portfolio where the optimal portfolio involves 
buying a relatively high number of contracts during the summer quarters in both 
scenarios. The negative premium during these quarters means that the overall 
impact of the premium is to make them much cheaper, leading to a lower risk than 
in the ‘Portfolio optimisation’ scenario.  

3.34. This premium has also made buying PPAs along with baseload contracts viable for 
the portfolio. 

3.35. In Figure 24, we see that the high-loss market states are much worse than in Figure 
19 because of the large premium on ASX and OTC contracts in this quarter. 
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Figure 22: Including seasonal risk premium: Sum of E-CVaR in each island, quarter, 
and day type given each portfolio. 
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Figure 23: Including seasonal risk premium: Profit in each market state in the North 
Island, in the July to September quarter, and during business days. Less effective 
portfolios. 
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Figure 24: Including seasonal risk premium: Profit in each market state in the North 
Island, in the July to September quarter, and during business days. More effective 
portfolios. 

 
 

Worst-Case Risk Measure 
3.36. We now compare how well each portfolio maximises worst-case profits for the given 

market states. Comparing Figure 25 to Figure 22, using a worst-case measure 
leads to there being a bigger benefit of using shaped contracts compared to the 
remaining portfolios. This difference is larger than when we used the E-CVaR risk 
measure, but the results still reach the same conclusion of having a variety of risk 
management tools being beneficial. 

3.37. In Figure 27, each portfolio has a higher worst-case profit compared to Figure 24, 
but this comes with higher costs in other market states and higher overall expected 
costs due to the added premiums.  
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Figure 25: Worst-case risk measure: Sum of worst-case profit in each island, quarter, 
and day type given each portfolio. 

 

Figure 26: Worst-case risk measure: Profit in each market state in the North Island, in 
the July to September quarter, and during business days. Less effective portfolios. 
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Figure 27: Worst-case risk measure: Profit in each market state in the North Island, in 
the July to September quarter, and during business days. More effective portfolios. 

 
 

More intermittent generation 
3.38. As wind and solar make up a larger share of energy generation, the ratio of their 

Generation Weighted Average Price (GWAP) to the Time Weighted Average Price 
(TWAP) is expected to decrease. According to Concept’s modelling7, for every 10% 
(of total generation) increase in wind, the GWAP/TWAP ratio for wind drops by 
about 0.1, and for every 10% increase in solar, it drops by about 0.3. 

3.39. In this scenario, we adjust wholesale prices as a function of wind and solar output in 
each trading period so that both wind and solar have a GWAP/TWAP ratio of 0.7. 
This ratio corresponds to wind making up about 30% of generation and solar 
making up about 10%. 

 

 
7  MDAG: Price discovery with 100% renewable electricity supply. Concept Consulting and Energy Link 

(ea.govt.nz) 

https://www.ea.govt.nz/documents/1097/06-100-Renewable-Electricity-Supply_-Simulation-Assumptions-and-Results.pdf
https://www.ea.govt.nz/documents/1097/06-100-Renewable-Electricity-Supply_-Simulation-Assumptions-and-Results.pdf
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3.40. Comparing Figure 28 to Figure 22, we see that wind and solar PPAs become less 
effective as risk management tools. Comparing Figure 30 to Figure 24 we see that 
one reason is their reduced ability to hedge against high evening peak prices. 

Figure 28: More intermittent generation: Sum of E-CVaR in each island, quarter, and 
day type given each portfolio. 
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Figure 29: More intermittent generation: Profit in each market state in the North 
Island, in the July to September quarter, and during business days. Less effective 
portfolios. 
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Figure 30: More intermittent generation: Profit in each market state in the North 
Island, in the July to September quarter, and during business days. More effective 
portfolios. 

 
 

Higher spot price volatility 
3.41. In this scenario, we adjust wholesale prices relative to the baseline scenario (like 

we did for the Low Price – High Volatility market state) by increasing the spot price 
multiplier by 0.5 and subtracting $70/MWh ($82/MWh in the Low Price – High 
Volatility market state to ensure the mean wholesale price is similar to the Low 
Price – Low Volatility market state), setting a floor price of $0/MWh, so the average 
price across all market states stays about the same. 

3.42. Comparing Figure 31 to Figure 22, we see that options including a battery, C300, or 
demand response become more useful as a risk management tool, and can even 
reduce risk slightly on their own (i.e. without having to use with a baseload 
contract). 
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Figure 31: Higher spot-price volatility: Sum of E-CVaR in each island, quarter, and day 
type given each portfolio. 

 
 

Figure 32: Higher spot-price volatility: Profit in each market state in the North Island, 
in the July to September quarter, and during business days. Less effective portfolios. 
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Figure 33: Higher spot-price volatility: Profit in each market state in the North Island, 
in the July to September quarter, and during business days. More effective portfolios. 

 
 

Higher prices at super-peak times 
3.43. For this scenario, relative to the baseline scenario we subtract $20/MWh ($30/MWh 

in the Low Price – High Volatility market state to ensure the mean wholesale price is 
similar to the Low Price – Low Volatility market state), setting a minimum price of 
zero, from all prices and increase super-peak (morning and evening peak) prices by 
50%, so that average prices across market states remain similar. 

3.44. In Figure 34, like in the ‘Higher spot price volatility’ scenario, the battery, C300 and 
demand response options become more effective at reducing risk. Solar PPAs 
become less effective at reducing risk, especially when compared to wind PPAs.  
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Figure 34: Higher super-peak prices: Sum of E-CVaR in each island, quarter, and day 
type given each portfolio. 

 
 

Figure 35: Higher super-peak prices: Profit in each market state in the North Island, in 
the July to September quarter, and during business days. Less effective portfolios. 
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Figure 36: Higher super-peak prices: Profit in each market state in the North Island, in 
the July to September quarter, and during business days. More effective portfolios. 

 

 

Comparing contract prices and risk adjusted profits across scenarios 
3.45. Table 6 summarises the risk-adjusted profit across all scenarios and portfolios. 

3.46. Table 7 to Table 10 summarise the contract prices across all scenarios. For brevity, 
each table is the simple average of the contract prices over Ōtāhuhu and Benmore 
as well as business days and non-business days. 

3.47. The battery price is the $/MW price divided by the number of hours in that quarter 
and day type. 

3.48. In the ‘More Intermittent Generation’ scenario, we see that the contract price for 
both wind and solar drop substantially across all quarters. Despite this reduction in 
contract price, the wind solar PPAs performed worse as risk management tools in 
this scenario (as shown by comparing Figure 28 to Figure 22).  

3.49. Conversely, the contract price for the battery and C300 contract increases 
significantly in the ‘Increased Peak’ scenario, where we saw it as a much more 
useful as a risk management tool (as shown by comparing Figure 34 to Figure 22). 
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Table 6: Risk-adjusted profit in all scenarios for all portfolios ($m pa). 

Portfolio 
Name 

Scenario 

 Baseline Portfolio 
optimisation 

Seasonal 
risk premium 

Worst-case 
risk measure 

More 
Intermittent 
Generation 

Increased 
Volatility 

Increased 
Peaks 

Unhedged -67.24 -67.24 -67.24 -160.11 -66.45 -66.51 -78.02 

Battery -82.90 -67.24 -67.24 -160.11 -66.45 -64.91 -77.45 

C300 -71.14 -66.34 -66.34 -154.73 -63.12 -60.56 -73.21 

Demand 
Response 

-69.60 -69.60 -69.60 -168.30 -69.60 -64.08 -74.61 

Baseload -11.66 -9.91 -10.44 -28.58 -11.22 -10.72 -13.35 

Peak -23.69 -13.69 -15.79 -39.09 -13.28 -14.60 -17.19 

Super-Peak -61.11 -51.17 -42.06 -108.60 -38.05 -39.80 -44.76 

Baseload & Peak -10.33 -6.18 -7.36 -17.98 -7.30 -7.00 -8.56 

Baseload & 
Super-Peak 

-6.42 -5.49 -6.89 -14.98 -6.85 -6.55 -8.04 

Baseload, Peak, 
& Super-Peak 

-9.78 -5.40 -6.86 -14.74 -6.85 -6.51 -8.00 

Baseload, Peak, 
Super-Peak, 
Battery, & C300 

 -5.32 -6.84 -14.73 -6.70 -6.50 -7.97 

Baseload, Wind, 
& Solar 

 -9.79 -9.32 -27.38 -11.17 -9.88 -12.34 

Baseload & 
Battery 

 -7.42 -9.10 -23.39 -10.08 -8.39 -11.28 

Baseload & C300  -6.30 -7.63 -19.78 -7.13 -7.04 -8.89 

Demand 
Response & 
Baseload 

-6.42 -6.05 -8.12 -19.94 -8.12 -7.94 -9.28 

Solar -37.43 -31.56 -31.56 -77.46 -40.02 -32.63 -39.48 

Wind -23.54 -22.75 -22.75 -54.41 -30.92 -25.96 -29.43 

Geothermal -14.53 -13.77 -13.77 -35.99 -15.21 -14.70 -17.04 

 

Table 7: Modelled contract prices in each scenario in the January to March quarter 
($/MWh). 

Scenario(s) Contract Name 
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 Base-
load 

Peak Morning 
Peak 

Evening 
Peak 

C300 Battery Solar Wind Geo-
thermal 

Baseline & Portfolio 
Optimisation 

140.61 159.49 182.87 205.82 9.84 4.51 161.86 123.48 148.38 

Seasonal Risk 
Premium & Worst-
Case Risk Measure 

120.11 138.99 162.37 185.32 9.84 4.51 161.86 123.48 148.38 

More Intermittent 
Generation 

117.04 118.41 162.57 159.74 12.14 5.22 105.34 99.39 144.49 

Increased Volatility 124.46 147.49 171.33 199.98 15.84 10.86 172.57 121.61 154.95 

Increased Peaks 121.57 151.52 216.71 248.78 19.07 16.87 167.86 123.94 151.03 

 

Table 8: Modelled contract prices in each scenario in the April to June quarter 
($/MWh). 

Scenario(s) Contract Name 

 Base-
load 

Peak Morning 
Peak 

Evening 
Peak 

C300 Battery Solar Wind Geo-
thermal 

Baseline & Portfolio 
Optimisation 

87.08 106.36 169.19 159.84 13.14 8.74 90.77 74.86 95.58 

Seasonal Risk 
Premium & Worst-
Case Risk Measure 

100.08 119.36 182.19 172.84 13.14 8.74 90.77 74.86 95.58 

More Intermittent 
Generation 

110.29 128.77 208.83 209.14 19.98 10.17 72.94 68.08 107.39 

Increased Volatility 88.69 112.25 192.29 175.09 19.75 25.37 77.66 59.34 87.49 

Increased Peaks 102.18 130.40 234.30 217.72 22.09 26.47 85.02 72.90 99.36 

 

Table 9: Modelled contract prices in each scenario in the July to September quarter 
($/MWh). 

Scenario(s) Contract Name 

 Base-
load 

Peak Morning 
Peak 

Evening 
Peak 

C300 Battery Solar Wind Geo-
thermal 

Baseline & Portfolio 
Optimisation 

132.11 144.70 168.08 189.62 4.57 6.71 139.40 126.35 140.26 

Seasonal Risk 
Premium & Worst-
Case Risk Measure 

152.61 165.20 188.58 210.12 4.57 6.71 139.40 126.35 140.26 

More Intermittent 
Generation 

152.39 154.70 182.63 226.97 7.27 7.58 93.53 102.59 139.18 
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Increased Volatility 146.23 160.54 180.76 211.97 5.82 12.32 136.95 117.89 137.38 

Increased Peaks 150.40 172.96 232.45 263.78 10.49 20.18 133.56 123.83 139.55 

 

Table 10: Modelled contract prices in each scenario in the October to December 
quarter ($/MWh). 

Scenario(s) Contract Name 

 Base-
load 

Peak Morning 
Peak 

Evening 
Peak 

C300 Battery Solar Wind Geo-
thermal 

Baseline & Portfolio 
Optimisation 

157.22 176.14 205.39 222.34 8.55 10.94 169.93 154.58 168.39 

Seasonal Risk 
Premium & Worst-
Case Risk Measure 

145.22 164.14 193.39 210.34 8.55 10.94 169.93 154.58 168.39 

More Intermittent 
Generation 

142.48 148.27 193.15 188.25 12.99 12.00 119.20 122.84 163.79 

Increased Volatility 150.56 173.56 202.40 226.66 13.55 13.47 178.20 159.56 178.97 

Increased Peaks 146.63 177.87 254.50 279.17 17.85 25.56 176.82 156.34 171.84 
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